The Impact of Climate Change on Air Quality–Related Meteorological Conditions in California. Part I: Present Time Simulation Analysis
نویسندگان
چکیده
This study investigates the impacts of climate change on meteorology and air quality conditions in California by dynamically downscaling Parallel Climate Model (PCM) data to high resolution (4 km) using the Weather Research and Forecast (WRF) model. This paper evaluates the present years’ (2000–06) downscaling results driven by either PCM or National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) reanalysis data. The analyses focused on the air quality–related meteorological variables, such as planetary boundary layer height (PBLH), surface temperature, and wind. The differences of the climatology from the two sets of downscaling simulations and the driving global datasets were compared, which illustrated that most of the biases of the downscaling results were inherited from the driving global climate model (GCM). The downscaling process added mesoscale features but also introduced extra biases into the driving global data. The main source of bias in the PCM data is an imprecise prediction of the location and strength of the Pacific subtropical high (PSH). The analysis implied that using simulation results driven by PCM data as the input for air quality models will likely underestimate air pollution problems in California. Regional-averaged statistics of the downscaling results were estimated for two highly polluted areas, the South Coast Air Basin (SoCAB) and the San Joaquin Valley (SJV), by comparing to observations. The simulations driven by GFS data overestimated surface temperature and wind speed for most of the year, indicating that WRF has systematic errors in these two regions. The simulation matched the observations better during summer than winter in terms of bias. WRF has difficulty reproducing weak surface wind, which normally happens during stagnation events in these two regions. The shallow summer PBLH in the Central Valley is caused by the dominance of high pressure systems over the valley and the strong valley wind during summer. The change of meteorology and air quality in California due to climate change will be explored in Part II of this study, which compares the future (2047–53) and present (2000–06) simulation results driven by PCM data and is presented in a separate paper.
منابع مشابه
Regional Simulation Model of the Meteorological Effects of Maharlu Lake on the Human Climate Health of Shiraz in Iran
Background and purpose: Human health is affected by a variety of human and natural phenomena that surround the environment. Atmospheric pollutants and thermal comfort conditions concern the quality of surrounding air. Given the influential role of lakes on the climatic conditions of their surrounding environment, the effect of different scenarios of Maharlu Lake in the southeastern part of Shir...
متن کاملStandard Precipitation Index (SPI) analysis in Karoon 3 Watershed under climate change
The aim of this study is to investigate climate change impact on Karoon3 basin in future periods. For this purpose, the simulated precipitation of 10 AOGCM models, including BCM2.0, CGCM3T63, CNRMCM3, CSIROMK3.0, GFDLCM2.0, GISS-ER, HADCM3, INMCM3.0, IPSLCM4, MIROC3.2 MEDRES was used to simulate drought index. Monthly precipitation was calculated by inverse distance weighted method. Standard Pr...
متن کاملInvestigating the effects of climate change on the pattern of heat accumulation in apple trees cultivation areas in Iran during the future period
Climate change stand as the most important challenge in the future. Horticulture is one of the most sensitive and vulnerable sectors to the climate change. Climate change and global warming will endanger the production of agricultural products and food security. Because of required longer time to fruit production, fruit trees are heavily susceptible to damage from climate change. The purpose of...
متن کاملAgricultural Drought Frequency, Duration analysis in Karoon 3 Watershed under climate change
The aim of this study is investigation of climate change impact on Karoon3 basin in future periods. For this purpose, the simulated precipitation and potential evapotranspirationof four AOGCM models was used to simulate drought index. Monthly precipitation was calculated by inverse distance weighted method. Reclamation Drought Index (RDI) was used as watershed drought index. RDI was calculated ...
متن کاملTemperature simulation of southwestern Iran during (2015-2050) using data from the general air circulation model
In recent years, global warming and climate change have been associated with dire consequences for human societies. Changes in climate patterns can lead to severe floods, extreme heat and cold, more frequent droughts, and global warming. This increase in global warming has upset the Earthchr('39')s climate balance and caused widespread climate change in most parts of the world, known as climate...
متن کامل